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We consider a two-level quantum system subject to kicks with a quasiperiodically modulated ampli-
tude. It is shown that, depending on the type of the function that generates the amplitude modulation,
two types of spectra can be observed: a discrete one and a singular continuous one. A renormalization
group approach is developed for the description of the correlation properties of the system. The two
types of spectra are shown to correspond to two fixed points of the renormalization transformation, one
in the class of continuous functions and another in the class of discontinuous ones. The crossover be-
tween the two types of behavior is investigated numerically.
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I. INTRODUCTION

The dynamics of quasiperiodically forced quantum sys-
tems has attracted considerable interest recently. In the
case of a periodic driving force the response can be only
quasiperiodic, as follows from the Floquet theorem. An
analog of the latter theorem does not exist for quasi-
periodic forcing and one may expect more complex types
of behavior, maybe even chaos, to be observed in this
case. A number of numerical and analytical studies were
devoted to this problem. Shepelyansky [1] considered a
quasiperiodically kicked rotator system and observed un-
limited diffusion of energy, contrary to the periodic case,
where the energy growth is limited [2]. Properties of the
quasienergy spectrum for this model were studied in Ref.
[3], where a transition from the discrete to the continuous
spectrum was observed. Pomeau, Dorizzi, and Gramma-
ticos [4] studied numerically a quasiperiodically forced
two-level system and observed correlations and spectra
typical for chaotic behavior. These results were ques-
tioned by Badii and Meier [5], who argued that the con-
clusions of [4] could be caused by insufficient numerics;
see also the discussion by Blekher, Jauslin, and Lebowitz
[6]. Sutherland [7] mentioned that slowly decaying corre-
lations may be observed in this system. Then two papers
on the quasiperiodically forced two-level system ap-
peared, with apparently contradicting analytical results.
Luck, Orland, and Smilansky [8] showed analytically that
the two-level system subject to quasiperiodic kicks does
not typically have a discrete component in the spectrum,
and based on numerical studies they argued that the spec-
trum is singular continuous. Geisel [9] also showed
analytically, for a class of parameter values, that the
correlation function of observables in this system was
quasiperiodic. He also demonstrated that this quasi-
periodicity was very hard to verify numerically and sug-
gested that observations of chaotic-type behavior might
be caused by these numerical difficulties. Graham [10]
generalized the results of [8] to the N-level case. Combes-
cure [11] showed that the response of the two-level sys-
tem on a sequence of kicks having a singular continuous
spectrum contains in general a discrete and a singular
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continuous component. Quite recently, Crisanti et al.
[12] investigated numerically the complexity of a quasi-
periodically kicked two-level system; they suggested that
its topological entropy is positive. Having all these re-
sults, one can conclude that the dynamics of the quasi-
periodically driven two-level system still lacks a clear un-
derstanding.

In this paper we focus on the correlation properties of
the two-level system forced by kicks with quasiperiodical-
ly modulated amplitude. Our main result is that the type
of the spectrum strongly depends on the form of the
external force. In particular, we demonstrate that the
two regimes—with a discrete spectrum (as derived by
Geisel [9]) and with a singular continuous spectrum (as
derived by Luck, Orland, and Smilansky [8])—
correspond to continuous and discontinuous modulation
functions, respectively. We also perform a renormaliza-
tion group analysis and demonstrate that the two types of
behavior correspond to two fixed points of a renormaliza-
tion transformation.

The paper is organized as follows. We formulate the
basic equations in Sec. II. Then, in Sec. III we analyze
two exactly solvable cases for which properties of correla-
tions may be derived analytically. A renormalization
group analysis of these cases is described in Sec. IV. We
use these findings as a basis for numerical study in Sec. V,
where the crossover between the two types of behavior is
also discussed.

II. BASIC EQUATIONS

The Hamiltonian describing a two-level system in a
time-dependent field S(¢) has the form

H(t)={wo,+1S(t)o, ,
where o, and o, are the Pauli matrices

01
10

1 0
Ox= 0 —1

x > 0,7

The corresponding Schriodinger equation for a spinor
(¢¥,,¢,) is (it is supposed that #i=1)
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l‘%:_l ‘(,b+lS(t)

dt o+ 38y, , "
dy,
— =lop,+1S(), .

It is convenient to rewrite this system in terms of the ob-
servable Bloch variables

A==y 1%,

B=i(¢7 —¢1¥3) ,

C=vyt +y93 ,
as

a4 _
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Suppose now, following [8,9], that the driving force S (¢)
is a sequence of 8-function kicks with the basic period T
and varying amplitude R:

S(= S R,8(t—nT). 3)

n=-—ow0

Then between the kicks Egs. (2) can be solved

A=4,
B=cos(wT)B —sin(wT)C , 4)
C=sin(wT)B +cos(wT)C .

During the kick only 4 and B vary; hence
A=cos(R)A +sin(R)B ,

at S(t)B , (2a)
4B B=—sin(R)A4 +cos(R)B , (5)
?=—S(t)A~—wC, (2b) c=0C .
ac _ The combination of the two rotations (4) and (5) gives the
wB . (2¢) - ¢
dt linear mapping
_
A, cos(R,) sin(R,)cos(wT) —sin(R,)sin(wT) | [ 4
n n
B, —sin(R,) cos(R,)cos(wT) —cos(R,)sin(wT) | |B, | . (6)
Crt1 0 sin(wT) cos(wT) C,
[
Note that the evolution conserves the integral discrete. According to the Wiener theorem (see, e.g.,

A*+B*+C*=1. v

We will further assume that the quasiperiodic sequence
R, is generated by the following dynamical system:

$p+1=¢,+Q (mod 1), (8)
R, =k®(¢,), P(¢+1)=D(¢). 9

An irrational Q in the circle map (8) produces a quasi-
periodic sequence ¢, and the amplitudes R are defined
via the modulation function ®(¢). In Secs. III and IV we
will fix Q to be the reciprocal of the golden mean
Q=(V'5—1)/2. The parameter « defines the level of
modulation; we will see below that the properties of the
system depend rather subtly on ®(¢) and «.

Iterations of the mapping (6), (8), and (9) produce the
sequences 4,, B,, and C, and our goal is to analyze their
correlation properties. Mainly, we will use the (normal-

ized) autocorrelation function (it is assumed that
(A4)=0)
(4,4,
K, ()y=—"—F"2"~ (10)
4 (4?)

(and the corresponding expressions for B, and C,). The
power spectrum, according to the Wiener-Khinchin
theorem, is the Fourier transform of the autocorrelation
function. In general, the spectrum may have a discrete (a
set of 8-function peaks) and a continuous component.
The spectrum of a quasiperiodic function is purely

[13]), a necessary and sufficient condition for the spec-
trum to be purely continuous (no discrete component) is

N
1\}5110 Sy =0 where SN=71,— t§0 |K(2)|? . (11)

A continuous spectrum can have an absolutely continu-
ous component (the spectral measure is equivalent to the
Lebesgue measure) and/or a singular component (the
spectral measure is singular with respect to the Lebesgue
measure). A necessary condition for the spectrum to be
absolutely continuous is the decay of the autocorrelation
function [13]

tlim K(t)=0. (12)
Usually, in dynamical systems the spectra consisting of
discrete (periodic or quasiperiodic) and absolutely con-
tinuous (chaotic or noisy) components are observed. Re-
cently, singular continuous spectra, which can be viewed
as intermediate between quasiperiodic and chaotic, have
been reported for a number of physical systems [14-17].

In the next section we consider two special cases for
which the nature of the autocorrelation function can be
obtained analytically.

III. EXACTLY SOLVABLE CASES

Let us assume that the time interval between &§-
function kicks T is a multiple of the basic period 27 /w,
namely, oT=2mm. In this case, as can be easily seen
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from (4), the value of the variable C at the moments of
kicks is constant. We can set C,, =0 (other choices C, <1
lead only to a renormalization of the variables 4, and
B,). The dynamics then is simply a rotation on the plane
(A4,B). It is convenient to introduce the phase of this ro-
tation 6, so that

B,=cos0,, A,=sinb, . (13)

The dynamics then reduces to the “skew sum”
¢,+1=¢,+Q (mod 1), (14)
0,,,=6,+kd(s,), (15)

with the observables defined by (13). Consider now the
two choices of the modulation function ®.

A. Case 1: Continuous modulation function
If we choose, following Geisel [9],
D(p)=cos(27¢)

then the autocorrelation function of B, =cosf, can be
calculated as follows. First, averaging over the initial
phase 8, gives

(B,B, ., )={cosB,cos6, ,,)=1(cos(6,,,—6,)) .
(16)
Then, using the formula
t—1
0n+—0,=k E D(d, 1)
k=0
t—1
=k Y, cos(2m¢, +k2wQ)
k=0
_ sin(7Qt) .
K———sinﬂ'ﬂ cos[2md, +(t—1)7Q] (17)

and averaging over the uniform distribution of ¢,, we get

(%]

sin(7Q¢)

Kyz(t)=J
5(1) o|x sinr ()

(18)

where J, is the Bessel function. This autocorrelation
function is obviously quasiperiodic (we remind the reader
that ¢ is discrete time t=1,2, . .. and Q is irrational) and
the spectrum is discrete.

B. Case 2: Discontinuous modulation function

Now we choose, similarly to Luck, Orland, and Smi-
lansky [8], the following modulation function ®:
ifo<¢<}

2
($)= [0 if 1<g<1.

Also, we set k=m/2. Then, 0, can be either 6, or 6,+,
so A,=x=sinf, and B, =tcosf,. From (13) and (15) it
follows that we can write a recurrent relation for 4 and B
as

Dn +1=DnCOS

m
2<D(¢n)l,
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where D stands for A or B. Combining this equation
with the circle mapping (14) we get finally

bp11=0,+Q (mod 1),
D,,,=D,6(¢,), (19)
where
—1 if0=¢<?t
=11 ir1<g<1.

Exactly this system was thoroughly studied in mathemat-
ical literature. It is called a ‘‘skew product” and was in-
troduced by Anzai [18,19]. It was rigorously proven that
D has a singular continuous spectrum [20,21,13,22].

Comparing the two cases, we can conclude that the
choice of the modulation function @ is crucial for the
correlation properties of the observable variables. We
will use these analytical results as a basis for further nu-
merical investigation. We calculate the autocorrelation
functions for the cases 1 and 2 numerically and present
the results in Figs. 1 and 2. The quasiperiodic autocorre-
lation function (Fig. 1) has a conventional form with al-
most exact returns to 1. The autocorrelation function for
the process with singular continuous spectrum (Fig. 2)
deserves a more detailed description (see also [17]). The
following properties can be mentioned.

(i) The values of the autocorrelation function neither
return close to 1 nor decay to zero.

(ii) The autocorrelation function looks periodic if the
scale of time is logarithmic (this periodicity corresponds,
of course, to the regularity of the golden mean; it disap-
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FIG. 1. Autocorrelation function of the observable B for case
1, k=m/2 (here and below in Figs. 2 and 7: bottom panel, in
conventional time scale; upper panel, in logarithmic time scale).
This is a typical autocorrelation function of a process with
discrete spectrum.
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FIG. 2. Autocorrelation function of the observable B for case
2, k=m/2. This is a typical autocorrelation function of a pro-
cess with singular continuous spectrum.

pears for a randomly chosen irrational Q).

(iii) Near each main peak the autocorrelation function
reproduces the entire structure, with appropriate scaling.
This is clearly seen in Fig. 3, where the part of the corre-
lation function near the peak at t=2584 is compared
with the part near t=0. The explanation of this self-
similarity will be given in the next section.

Additionally, we have calculated for these two cases
the sum (11). From Fig. 4 one can see that it is indeed

correlation function

T TTTT
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o
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FIG. 3. Self-similar structure of the autocorrelation function
Fig. 2. The part near t =2584 is magnified, so that K(2584)=1,
and plotted under the part near ¢ =0.
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FIG. 4. Sums (11), calculated for the autocorrelation func-
tions in Figs. 1 (upper curve) and 2 (lower curve).

possible to distinguish numerically between the discrete
(the sum does not decrease) and the continuous (the sum
decreases) spectra. Noting that the correlation function
Fig. 2 does not satisfy the necessary condition (12), we
conclude that the spectrum is singular.

IV. RENORMALIZATION GROUP

Here we present a renormalization group analysis of
the autocorrelation functions described in the preceding
section. A similar approach has been developed for
strange nonchaotic attractors in Ref. [23].

As one can see from the Egs. (16) and (17), the auto-
correlation function of the observable B can be expressed
as

Kp(t)={cos[«Q,(¢)])= [ cos[«kQ,(¢)ld¢ ,  (20)

1
0
where
t—1
0,(p)=3 P(p+1Q), Qy=0. 2n
1=0
Because Q is the reciprocal golden mean, we expect that
the maximum correlations will occur at the “resonant
times” of the circle mapping (8) t =F,,, where F,, are the
Fibonacci numbers (F,=0, F;=1, and F,,=F, _,
+F,, _,). For these times we obtain from (21) a recurrent
relation
F,—1

O ($)= 3 D(p+1Q)
=0

F —1

D(p+1Q)

1=0

Fm_z——l

+ S ®($+IQ+F, _ Q)
=0

=Qr ($)+Qr ($+F, Q).

The phase shift appearing in the last term can be
represented as

F, _Q=F, ,—(—Q)""!

(22)

(23)

(this is a well-known property of Fibonacci numbers; see
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[24,25]). The integer part on the right-hand side of (23)
can be omitted [because Q(¢) is periodic with period 1]
and the remaining part suggests that the natural scale of
the variable ¢ for the function Q (¢)is (—Q)™. There-

fore we introduce a renormalized function as
Zm(y)=me(y(—Q)'”) (24)

and obtain from (22) the renormalization transformation
Z,3)=2Z, _(—yQ)+Z, _,(yQ*+Q). (25)

Although this equation is linear, its dynamics is nontrivi-
al.
Let us take the function ®(¢) in the form
D(¢)=exp(i2mkd). Then it follows from (21) that
(&) =exnli2mkd) 1—exp(i27kF, Q) 26)
O, (@) =expli2mkd)—— k)
Taking into account the relation (23), we conclude that
IQle tends to zero for any finite k: |Qr |~Q™. This

convergence is nonuniform because |1—exp(i27kQ™)| =
O(1) for k>Q~ ™. Since the transformations (22) and
(25) are linear, we can consider the function ®(¢) to be a
superposition of harmonic components and for each of
them write (26). The result will depend, however, on the
form of the spectrum of ®(¢) due to the nonuniformity
mentioned above. If the spectrum decreases sufficiently
fast with k (e.g., it consists of one spectral component as
in case 1 of Sec. III or decays no slower than k ~2 as for
continuous functions), then the function QFm(¢) de-

creases with m, which means that the renormalization
transformation (25) converges to a trivial fixed point
Z(y)=0. If the spectrum decreases as k ~!, the harmon-
ics with large k dominate in the spectral representation of
Qr (¢4) and this function does not necessarily decrease

with m. This means that the only continuous fixed point
of (25) is Z(y)=0 [or Z(y)=const if we consider modula-
tion functions with nonzero mean value], while there can
exist nontrivial discontinuous solutions.

The nontrivial solutions of the renormalization group
transformation (25) can be found with the following nu-
merical procedure. We choose the function ®(¢), calcu-
late the sum (21) for t=F,,, and then renormalize it ac-
cording to (24). If we start from a continuous function,
e.g., D(d)=cos(27¢) as in case 1 above, this procedure
always leads to the trivial solution Z(y)=0. If we start
from a discontinuous function, Z does not decay during
the iterations. The simplest case is the following choice
of the modulation function ®:

1 if0<g<l

PO=1_1 if1<¢<1. @7
In this case the iterations converge to a period-6 solution
of the renormalization transformation (25). We present
nonrenormalized functions Q(¢) in Fig. 5, where the
change of a natural scale in ¢ is clearly seen. The res-
caled functions Z,, are plotted in Fig. 6.

Having found the solution of the renormalization
group equation, it is easy to calculate the autocorrelation

TTT T T T T

T T T

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 5. Nonrenormalized function me(qb) for F¢=8 and
Fo=34.

function for t =F,,, m >>1. Using (20) and (24), we get
Kgp(F, )={cos[kZ,,(»)])

. 1 L
=1 — Z . 2
Jim S _Lcos[K »(y)]dy (28)
For the continuous fixed point Z(y)=O0 this gives
K3 (F, )=1, while for the discontinuous solution the au-
tocorrelation is less than 1. Consider, e.g., the period-6
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FIG. 6. Period-6 solution of the renormalization transforma-
tion (25) with the modulation function (27). We show all the
functions for 15=<m <26 to make the periodicity clear. Note
also the symmetry Z,, .;=—2Z,,.
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solution for the function (27), presented in Fig. 6. Here,
for m =3/+1 and 3/ +2 the function Z,,(y) is +1, so for
these m the autocorrelation function is
Kg(F3 4 1)=Kg(F3 ,)=cos(k). More complex is the
case m =31; here the function Z,, (y) has values 0, =2 so

Ky(F5)=1—a+a cos(2k) ,
where a =1(|Z3|)=~0.2236  (29)

(the value of a has been obtained numerically from the
function Z,,). From this representation we see that the
case k= is exceptional: here the autocorrelation func-
tion returns to 1, like for the continuous modulation
function. For other values of the parameter « the value
of Kz at “resonance times” is less than 1 and the
minimum is Kg(F;;)=1—2a~0.55279 at k=mw/2. For
this value of « the correlations at m =3/+1 and 3/+2
vanish; the whole autocorrelation function is presented in
Fig. 7. It has the same self-similar structure as the auto-
correlation function in the exactly solvable case 2 of Sec.
III. This self-similarity can be easily understood from
our renormalization group approach.

Consider the autocorrelation function at time F, *t,
where t <<F,,. We can write

Or, +:(#)=CF ($)£0,(¢—(—Q)");
therefore
Kp(F, t)={cos[kQp ($)]cos[kQ,(¢—(—2)™)])
= [ d¢cos(xQy, (4)]
Xcos[kQ,(¢—(—Q)™)] .

Now we can use that me(qﬁ) is a rapidly oscillating func-

1.0
c L
8 .
S 05
2 r ﬁ i i
& 00f
s r
Sos5F
o
(8]
_1A0 llO 11 IIIJHI1 1 IJkLllLll;2 1 1 ILIIHL 1 1|u_u|l
10 10 10 10° 10%
time

correlation function

- s | L 1 L
10 0 2000 4000

l 1 l 1
6000 8000 10000

time
FIG. 7. Autocorrelation function of the observable B in the
case of discontinuous modulation function (27) for k=1 /2.

1767

tion (the characteristic scale is Q™~F,, ') without large
scale variations [see Fig. 6(b)] and Q,(¢) has only large
(of order of t ™) scale variations. Thus we can approxi-
mate the integral as

J /a6 cos[xQy, (¢)lcos(xQ,(4—(—0)™)]
~ fo‘d¢cos[KQFm(¢>] fo‘d¢cos[KQ,(¢—<—mm)]
to obtain
Ky(F, tt)=Kg(F, )Kg(t) . (30)

This formula describes the scaling of the autocorrelation
function and explains Figs. 3 and 7. Together with the
main resonant times F, it gives secondary resonances
F,,£F,, n <m, etc. In the continuous case, when at the
main resonances the autocorrelation function is close to
1, Eq. (30) shows that at all secondary, third-order, etc.
resonances the autocorrelation function is also close to 1;
this is clearly seen in Fig. 1. In the discontinuous case
this equation gives, for high-order resonant times, a
geometrical progression with a factor less than 1 (0.55 for
k=1 /2), high-order resonances are small, and main reso-
nant peaks give periodicity in the logarithmic time scale
(Fig. 2).

The renormalization approach developed above has
some peculiarities in comparison with the usual renor-
malization group analysis of dynamical systems (see, e.g.,
[26]). Normally, renormalization is nontrivial only in a
critical situation, usually at the border between order and
chaos [26]. In our case the renormalization is not at-
tached to any transition, but represents some number-
theoretical properties of the irrational Q. In fact, the
scaling obtained for the modulation function (27)
represents the regularity of trajectories of points ¢=0
and 1 [the coordinates of discontinuities of (27)] in the
circle map (8). Another choice of the modulation func-
tion will give another scaling, so the properties of the re-
normalization transformation must very subtly depend
on the choice of ®(¢) [13,15,17]. We cannot exclude that
some choices of the discontinuous modulation function
may lead to a trivial fixed point, thus giving a discrete
quasiperiodic spectrum.

V. NUMERICAL RESULTS

In this section we present results of numerical studies
of the cases, which we cannot describe analytically. Our
main tool is the calculation of the autocorrelation func-
tion and comparison with the patterns of Figs. 1, 2, and
7.

A. Crossover between discrete
and singular continuous spectra

The difference in the properties of the autocorrelation
function for continuous and discontinuous modulation
functions suggests that one can observe a crossover for
nearly discontinuous functions. We have checked this for
the system (13)—(15) with the modulation function
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P(o)= (3D

In this function the vertical segments are replaced by the
lines with slope £ ~!. The autocorrelation functions ob-
tained for this system for different € and k=w/2 are
presented in Fig. 8. For small times the correlations are
similar to those in the discontinuous case, while for large
times the quasiperiodic-type correlations are restored.
The crossover is clearly seen in Fig. 9, displaying depen-
dence of the sum (11) on N: after initial decay the sum
saturates, which indicates the presence of the discrete
component in the spectrum. The saturation level de-
creases with €.

B. General case

The whole discussion above was restricted to the case
where the main period of the kicks T was a multiple of
the period of free rotation 27 /w. Now we suppose that
both the period of the amplitude modulation and the
period of free rotation are incommensurate with the main
period and with each other. We chose, following [27,28],
the frequency , in the circle map (8) and the angle of
free rotation Q,=wT/2m as follows: Q,=& 2 and
Q,=£7!, where £ is the so-called “spiral mean” —the
real root of £2—£—1=0; then we iterated the mapping
(6) and calculated the autocorrelation function for the ob-
servable B. In Fig. 10 we present the results for two

€=0.0001

T Y
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TTTT T

0.0

-0.5

correlation function

[REREARERE
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[LASEEBERARERREEERRES]

ARENRERRNRRRRE]

correlation function

|

_1‘0'\} ol Lol !
10 10" 102 10°
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FIG. 8. Autocorrelation functions for the modulation func-
tion (31) and different €. In the limit e—O0 the autocorrelation
function depicted in Fig. 7 is restored.
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FIG. 9. Sums (11) for the autocorrelation functions in Figs.
8, for e=1072, 1073, 1074, and 103 (from top to bottom). The
saturation level decreases with €.

choices of the modulation function &®: the continuous
and the discontinuous. Like in the exactly solvable cases
of Sec. III, the difference between the quasiperiodic and
the singular continuous spectra is clearly seen in these
graphs and in the behavior of the sums (11) (Fig. 11).
Thus we can formulate the following hypothesis: if in the
quasiperiodically kicked two-level system the modulation
function is continuous, a discrete spectrum is observed; if
the modulation function is discontinuous, typically a
singular continuous spectrum appears.

VI. CONCLUSION

We have shown that the response of the two-level
quantum system on the quasiperiodic external forcing

-
o

(a)

o
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o
o
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time
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correlation function
: o
o

1.0
10°

FIG. 10. Autocorrelation functions of the observable B re-
sulted from the general transformation (6) with k=m/8: (a)
discontinuous modulation function (27) and (b) sine modulation
function.
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FIG. 11. Sums (11), calculated for the autocorrelation func-
tions in Fig. 10.

strongly depends on the form of the force. If the ampli-
tudes of &-function kicks are modulated with a continu-
ous function, the spectrum of the observables is discrete;
if the modulation function is discontinuous, the spectrum
is singular continuous. This resolves the apparent con-
tradiction of the conclusions of Refs. [8] and [9]. These
results can be reformulated in the following way. The
spectrum of the external force contains all harmonics of
the type nQ mod 1 (we remind the reader that, because of
the discreteness of the process, the spectrum is restricted
to the interval [0,1]). For the continuous modulation the
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harmonics with large n have relatively small amplitudes
(e.g., for smooth functions they decay exponentially with
n), while for discontinuous modulation they decay only as
n~1. This much more dense spectrum of the external
force leads to the nontrivial response. It is worth noting
that a similar difference has been observed in the studies .
of spectral properties of the one-dimensional discrete
time-independent Schrodinger equation with a quasi-
periodic potential. If the potential is given by a cosine
function (Harper’s equation), a fractal spectrum exists
only for one value of the modulation amplitude; if the
modulation is discontinuous, the system is critical for ar-
bitrary modulation amplitude [29,16,30,31].

Although throughout this paper we have spoken about
spectra, the quantity that was calculated analytically and
computed numerically was the autocorrelation function.
This function, which is in fact a Fourier transform of the
power spectrum, appeared to provide a rather convenient
tool to distinguish between different kinds of behavior.
The properties of the spectrum itself (e.g., its properties
as a multifractal) will be discussed elsewhere.
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